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Abstract. In order to study the tunneling of electrons through an interacting, 1D, dimerized molecule con-
nected to leads, we consider the persistent current in a ring embedding this molecule. We find numerically
that, for spinless fermions, a molecule with a gap mostly due to interactions, i.e. a Mott-Hubbard gap, gives
rise to a larger persistent current than a molecule with the same gap, but due only to the dimerization. In
both cases, the tunneling current decreases exponentially with the size of the molecule, but more slowly in
the interacting case. Implications for molecular electronic are briefly discussed.

PACS. 73.40.Gk Tunneling – 73.61.Ph Polymers; organic compounds – 61.16.Ch Scanning probe
microscopy; scanning tunneling, atomic force, scanning optical, magnetic force, etc.

1 Introduction

One of the major challenges of molecular electronics is
to find molecules which could act as wires. For this pur-
pose, special attention has been devoted to conjugated
oligomers, and especially to the simplest of them, polyene,
the finite size equivalent of polyacetylene (CpHp+2). If
one considers non-interacting particles, the conductance
of the set lead-molecule-lead is, at low bias and according
to Landauer’s formula [1,2], proportional to the transmis-
sion coefficient through the molecule at the Fermi level of
the leads. This approach was already successful in repro-
ducing experimental results on a single C60 molecule [3],
and it seems natural to apply it to polyene.

In the framework of non-interacting electrons, there
is a charge gap due to the dimerization of the chain and
Joachim and collaborators [4] found that the conductance
shows a minimum when the Fermi energy of the leads is
in the middle of this gap. At this point and only here, the
current changes linearly with the voltage. Such a prop-
erty is important to get a good molecular wire. Thus we
have to consider the magnitude of the current at this
point. Joachim showed that this minimum behaves as
t0e
−γ(2N−2), 2N being the length of the molecule. The

coefficient γ grows with the dimerization, and the pref-
actor t0 depends on the lead-molecule contact. It turns
out to be possible to tune these parameters to get non
negligible currents in long wires (10 nm). These prelim-
inary results were then confirmed by further simulations
on polyenes and alkanes connected to golden leads. See
also reference [5].
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However, there are very good reasons to believe that
electronic correlations play a role in fixing the magnitude
of the charge gap in polyene [6]. We give here the main
ones. First, the lowest excited state is dipole-allowed, and
this can be recovered theoretically only when correlations
are included [7]. Second, the observed negative spin den-
sities [8,9] can be understood only for models with inter-
action [10]. Third, photo-induced absorption experiments
[11] showing a splitting of the soliton peak in the middle of
the gap would be puzzling without interactions [12]. Fur-
thermore, ab initio calculations need to include in some
way the correlation to get the right ground state dimeriza-
tion [13]. Therefore, we wish to include interactions inside
the molecule and treat them exactly. In comparison with
the free case and for a given gap, we would like to know if
these correlations increase or decrease the lowest current.

How can we study this current? Interesting results have
been derived for a Luttinger liquid connected to leads
[14,15], but they cannot be applied to the present case
when the chemical potential lies in the gap. There is also
a general formula describing the current through an in-
teracting region connected to non-interacting leads [16].
However this formulation only allows an analytical eval-
uation if the interactions can be treated perturbatively,
which is clearly not the case in polyene, and it is not so
clear how to use numerical results obtained on finite size
clusters for the Green’s functions within this formalism.

So, we need another way to estimate the conductance.
In the non-interacting case, the behavior of the conduc-
tance is strongly related to the exponential decrease of the
amplitude of the wave function at the Fermi level inside
the molecule. (We consider only one channel for simplic-
ity.) This exponential decrease also controls the persistent
current in a ring embedding the molecule. So, persistent
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currents and conductance are related in this case. We will
assume that such a relationship still holds, at least qual-
itatively, in the interacting case. More precisely, we will
suppose that what happens to the minimum persistent
current by changing the molecular dimerization or inter-
actions informs us on what would happen to the tunneling
current, and we will concentrate on the persistent current
because we know how to evaluate it numerically.

The paper is organized as follows. We introduce the
model in Section 2. In Section 3, we analyze in more de-
tails the relationship between the persistent current and
the conductance in the non-interacting case. Finally we
present the central results of this paper about the persis-
tent currents in the interacting case in Section 4.

2 The model

We describe the molecule by a dimerized and interacting
region of length M . It is embedded in a non-interacting
ring of length N describing the electrode (see Fig. 1). The
ring is pierced by an Aharonov-Bohm flux Φ. Denoting
by L = N + M the total number of sites, the persistent
current I(Φ0) is related to the groundstate energy E(Φ)
by I(Φ0) = LdE

dΦ
|Φ=Φ0 . for simplicity we will concentrate

on the mean value of |I| over Φ0 given by ∆I = L
π |E(π)−

E(0)|.
We will use the following Hamiltonian:

Ĥ = Ĥe + Ĥα + Ĥm + V̂ + ε̂m (1)

with

Ĥe = −teiφ
N−2∑
i=0

c†i+1ci + h.c.

Ĥα = (−αe−iφc†L−1c0 − αe
iφc†NcN−1)) + h.c.

Ĥm = −t1e
iφ

M/2−1∑
i=0

c†N+2i+1cN+2i + h.c.

−t2e
iφ

M/2−1∑
i=1

c†N+2icN+2i−1 + h.c.

V̂ = V

L−2∑
i=N

nini+1

ε̂m = εm

L−1∑
i=N

ni.

In these expressions, the operator c†j creates a fermion

at site j, and ni = c†i ci is the density operator at site
i. The metallic electrode is described by a tight-binding
Hamiltonian Ĥe with a hopping integral t.

The molecule is described by the sum of three terms:
Ĥm is a tight-binding Hamiltonian that describes the ki-
netic energy inside the molecule. It involves two alternat-
ing hopping integrals t1 and t2 to take the dimerization

t
α

α
t

2

1

Molecule
Electrode

t

Fig. 1. Geometry of the system. Each open circle corresponds
to a site and the links correspond to the various hopping
integrals.

into account. V̂ represents the nearest neighbour repulsion
between the particles, and ε̂m fixes the chemical potential
of the molecule.

The molecule and the electrode are connected by a
transfer term Ĥα that allows the electrons to hop from
one to the other.

Finally all the hopping integrals are multiplied by a
phase factor eiφ with φ = Φ/L to describe the Aharonov-
Bohm flux.

Of course a realistic calculation should deal with elec-
trons, i.e. fermions with spin. It turns out however that the
sizes one can reach with electrons are too small to allow a
meaningful finite size analysis (see below). So we have de-
cided to restrict ourselves to spinless fermions. This should
be useful as a first step toward more realistic systems be-
cause the physics of Mott-Hubbard insulators — i.e. sys-
tems where the charge gap is due to correlations — is very
similar for spinless fermions and fermions with spin.

3 Relationship between the persistent current
and the conductance for non-interacting
particles

There is no exact relation between the persistent current
and the conductance in general, but we will show that the
two quantities share qualitative and quantitative features
in the non-interacting case.

3.1 How to calculate the conductance G?

According to Landauer, the conductance is proportional
to the transmission coefficient TF at the Fermi level. This
coefficient can be calculated by considering two semi infi-
nite leads connected to the molecule. Using the matching
procedure, the stationary state |E〉 of energy E can be
searched for as:

|E〉 = |keL〉+ rE | − k
e
L〉+Am1 |k

m〉

+Am2 | − k
m〉+ tE |k

e
R〉 (2)
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Fig. 2. Plot of the logarithm of the transmission coefficient
T versus the Fermi energy EF of the incident particle, in the
non-interacting case. Here M = 20, t1 = 0.7t , t2 = 0.56t,
α = 0.35t, in order to compare this plot to Joachim’s
result [3].

where rE , Am1 , Am2 and tE are unkonwn coefficients to
be determined by continuity conditions. Here |keL,R〉 and
|km〉 correspond to the states with energy E that one
would get for infinite leads or for an infinite molecule,
and the momenta must satisfy: E = −2t cos(kej ) =

−
√
t21 + t22 + 2t1t2 cos(2kmj ). The transmission coefficient

is then obtained as T (E) = |tE |2. An analytical formula
for T (E) can be derived, but is is too complicated to be
written down. It is also possible to get T (E) for more real-
istic band structures. See reference [17]. A typical example
is depicted in Figure 2. Although the method is different
from that of reference [4], we have checked that the results
are indeed the same.

3.2 How to calculate the persistent current ∆I?

We now consider the geometry of Figure 1. In the absence
of correlations, the total energy E inside the ring is the
sum of the energies Ei of the occupied monoparticular
states (up to EF ). Thus the total current I is the sum of
the individual currents Ii of these levels.

The simplest way to get these energies Ei is again
to use the matching procedure. The ring being closed, a
monoparticular state |Ei〉 must now be searched for as:

|Ei〉 = Ae1|k
e
1〉+Ae2|k

e
2〉+Am1 |k

m
1 〉+Am2 |k

m
2 〉 (3)

where |kej 〉 and |kmj 〉 are again free propagating waves
in the electrode and in the molecule. Note however
that they now satisfy: Ei = −2t cos(kej − φ) =

−
√
t21 + t22 + 2t1t2 cos(2kmj − 2φ), j = 1, 2, because of the

Aharonov–Bohm flux.
The continuity conditions yield 4 linear equations for

the coeficients Aei and Ami . We get a solution Ei each time

the determinant of this system vanishes. This determinant
can be evaluated numerically, and we get the monopartic-
ular states and energies as in Section 3.1.

An alternative way consists in using the transfer ma-
trix formalism. If α and β are the amplitudes of the incom-
ing and outgoing waves on the left side of the molecule,
the incoming and outgoing amplitudes on the right side
α′ and β′ are given by(

β′

α′

)
=

(
1/t∗k −r

∗
k/t
∗
k

−rk/tk 1/tk

)(
α
β

)
where tk and rk the transmission and reflection coefficients
for an incident wave vector k defined in the preceding
subsection. The matrix Tm that enters this equation is
called the transfer matrix of the molecule.

A similar definition for the transfer matrix Te of the
electrode holds, with rk = 0 and tk = eikN . The continuity
conditions can then be written:

Te × Tm

(
α
β

)
= eiΦ

(
α
β

)
· (4)

Note that in this approach the flux is concentrated in the
boundary conditions, so that the energy is related to the
wave–vectors by the usual relations of Section 3.1.

Denoting by Θk the phase of tk, the condition that the
corresponding determinant vanishes yields:

|tk| cos(Φ) = cos(Θk + kN) (5)

This equation can be solved numerically for k, tk being
calculated as in Section 2.1, and we get again the spec-
trum. While the matching procedure is more convenient
for that purpose, this equation turns out to be very useful
to discuss the minimum value of the persistent current as
a function of the chemical potential εm (see Sect. 3.4).

3.3 General shape of G and ∆I

We are now in a position to compare the behaviors of
∆I and T with the Fermi level EF of the electrode. More
precisely, the important parameter is the difference E′ =
EF − εm which vanishes when EF sits right in the middle
of the molecular gap.

We can first control E′ by varying the value of εm for a
given filling of the ring. The plot of ∆I(E′) for a half-filled
system is given in Figure 3. Although their shape and size
are modified, it is important to notice that the resonances
are located at the same energies as for T (EF ). Besides, as
long as α is not too large — which is the case in Figure 3
— the number of resonances is equal to M for both. Some
of them are washed out — both for T and for ∆I — when
α is of the order of t however.

We can also vary the filling NF of the ring (which
control EF ) for a given εm, say 0, and we get a similar
result for ∆I as a function of E′ (See Fig. 3). The only
difference is that some resonances are now missing since
the bandwidth of the electrode is smaller than that of the
molecule in the example of Figure 3. Of course they can
all be restored by tuning the chemical potential of the
molecule εm.
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Fig. 3. Comparison of the transmission coefficient T and the
average persistent current ∆I in the non-interacting case for
M = 6, t1 = 2.6t , t2 = 2.2t, α = 0.3t. (a) T versus the Fermi
energy EF . The on-site energy in the molecule εm was set equal
to zero. (b) Variation of ∆I with EF − εm when EF is fixed by
the band filling and εm varies. The parameters are N = 60 and
EF = 0 (half filling). (c) Variation of ∆I with EF − εm when
εm is fixed and EF varies with the filling. The parameters are
εm = 0 and N = 120.

3.4 Value of the minimum current

We now compare the minimum value of the persistent
current and the minimum value of the transmission co-
efficient. They both appear for EF = 0, if the chemical
potential of the molecule εm is set to 0. Let us first calcu-
late the mean current of the monoparticular state located

at the Fermi level ∆IF =
L

π
|EkF (Φ = π) − EkF (Φ = 0)|.

The energy at the Fermi level is given by:

EF (Φ) = −2t cos[kF (Φ)]. (6)

For a finite-size system, EF < 0 and |EF | � 1, and equa-
tion (6) gives:

EF (Φ) = 2tkF (Φ)− tπ. (7)

We also know that |tF (Φ)| � 1 and thus equation (5)
yield:

NkF (Φ) +ΘF (Φ) = 2nπ + επ/2− ε cosΦ|tF (Φ)| (8)

where ε = ± 1 and n ∈ Z depend on N and the scattering
properties of the molecule, but do not depend on Φ since
kN +Θk is a continuous function of Φ.

We get from equations (7, 8):

EF (Φ) = −2t[ΘF (Φ) + 2nπ + επ/2

−ε cos(Φ)|tFΦ)|)/N − tπ]. (9)

Thus from equation (6) the current at the Fermi level is:

∆IF = 2t|ε(|tF (π)|+ |tF (0)|)

−ΘF (π) +ΘF (0)|L/N. (10)

When N goes to infinity, N/L tends to 1, |tF (π)| and
|tF (0)| merge and (ΘF (π)−ΘF (0)) goes to zero.

Finally:

∆IF = 4t
√
TF . (11)

It is possible to see in the same way that the sign of the
current carried by the successive levels is alternate. The
absolute value of this currents changes continuously with
the energy level, and therefore at largeL, the total current,
which is the sum of the currents of the occupied level,
is half of the last one. Thus, taking the absolute value:
∆I = ∆IF /2.

So, by using the Landauer formula G =
e2

h
TF , we get

the following relation between the persistent current and
the conductance:

∆I =
2t

e

√
hG.

The amplitude of a transmitted wave after the molecule
is proportional to e−2γM with 2 coshγ = t1/t2. Thus
TF and G decrease like e−2γM while ∆I is proportional
to e−γM . This point can be easily understood if we re-
member that we are free, by a gauge transformation,
to concentrate the whole phase factor Φ = π in the
middle of the molecule. The difference between the zero
flux case and the Φ = π case in the Hamiltonian is
δĤ = 2 × t2(c†M

2

cM
2 −1

+ hc). This can be seen as

a perturbation and its first order influence on the level
Ei is:

δEi = 〈Ψi|δĤ|Ψi〉 = 2t2[Ψi(M/2)× Ψ∗i (M/2− 1) + cc].

At the Fermi level we have: ΨF (M/2) ∝ e−γM/2 and thus
δEF ∝ e−γM . This energy shift is proportional to the
Fermi-level current and thus to the total current.

As a conclusion, in the non-interacting case, the per-
sistent current gives valuable informations on the conduc-
tance. First, the resonances have the same location. Sec-
ond, the minimum persistent current is proportional to the
square root of the minimum conductance. Thus, since the
later decreases exponentially with the size of the molecule,
the former has the same behavior, but with a coefficient
in the exponential twice as small.

4 Persistent current for an interacting
molecule

We now study the minimum persistent current in the ring
when the interaction term V̂ is included. We have used
three different methods to get the groundstate energy of
the interacting system. The last two are mainly used to
check the reliability of the first one.

4.1 Exact diagonalizations

We haved use Lanczos algorithm to diagonalize the Hamil-
tonian and get the groundstate energy E0(M,N) for small
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Fig. 4. Plot of the average persistent current ∆I versus 1/L.
(a) Non-interacting case up to L = 140 (diamonds). (b) First
order perturbation according to equation (6) up to L = 36 for
V/t = 0.2 (squares). (c) Exact diagonalizations up to L = 26
(triangles) and DMRG for 28 and 30 sites (open circles) for
V/t = 1 and εm/t = 0.76. In all cases a quadratic fit is correct.
In this example M = 6, t1 = 2.6t , t2 = 2.2t, α = 0.3t.

values of M and N . For a given molecule of length M , we
wish to get rid of the effect of the finite size N of the
electrode. This was achieved by performing a finite size
scaling on E(L) with fixed M and increasing N .

It turns out that a meaningful description for the
molecule requires at least M = 6. Besides, to perform
this scaling, we need as many values of N as possible, and
this can be conveniently done while keeping the density
fixed only at half–filling. Then for fermions with spin 1/2
and for L = 16 the dimension of the Hilbert space is of
the order of 1.65 × 108, i.e. too large to be handled nu-
merically. Thus, in order to get enough points to perform
a reliable finite size scaling, we have decided to limit our
study to interacting spinless fermions. In that case, we
could go up to L = 26, in which case the dimension of the
Hilbert space is of the order of 107.

If we plot the average persistent current versus 1/L,
is appears that a quadratic law fits the numerical results
quite well (see Fig. 4) as long as the bandwidth of the
electrode is smaller than the molecule’s one. This case
corresponds to a large enough density of states at the
Fermi-energy of the electrode. To test the reliability of
the fit, we have made the same plot up to L = 120 for
non-interacting particles (see also Fig. 4). The difference
between the two extrapolated values for the two fits (up
to L = 26 and up to L = 120) is never more than 5%.
However, this is no proof that the same fit is accurate
for interacting particles, and we now turn to alternative
methods to check the extrapolation.

4.2 Small repulsion limit

We will now derive the persistent current to first order in
the interaction V . Although this limit is not relevant for

the case of polyene, it will be used to test the relibiality of
our scaling law. The interaction term in the Hamiltonian
is:

V̂ = V

M−2∑
i=0

c†icic
†
i+1ci+1.

The energy levels |Ej〉 of the non-interacting case can be
calculated as in Section 1.2. They are non-degenerate and
form a basis for the monoparticular states. If the Ej ’s
are sorted in increasing order, the non-interacting ground
state is given by:

|Φ0〉 =
∏
j≤NF

c†Ej |∅〉

where c†Ej creates one particle in state |Ej〉. Besides, at

half–filling, NF = L/2. The original creation operator c†i
can then be written:

c†i =
N∑
j=1

c†Ej 〈Ej |i〉·

The first order correction to the ground state energy
∆E = 〈Φ0|V̂ |Φ0〉 is thus given by:

∆E = V

M−2∑
i=0

( ∑
j≤NF ,l≤NF

|〈i+ 1|Ej〉|
2|〈i|El〉|

2 (12)

+
∑

j≤NF ,l>NF

〈Ej |i+ 1〉〈i+ 1|El〉〈El|i〉〈i|Ej〉
)
.

∆E can be easily calculated numerically for periodic (Φ =
0) or antiperiodic (Φ = π) boundary conditions up to quite
large systems. We can see in Figure 4 that the quadratic
scaling law is still valid up to L = 36 for small V .

4.3 DMRG

To find the ground state energy of a one-dimensional sys-
tem, an alternative method to the exact diagonalisation
is the Density Matrix Renormalisation Group [18]. While
this method gives very precise results for open boundary
conditions, it is always less accurate for closed boundary
conditions.

Treating the molecule exactly and considering half of
the electrode as the growing block, we meet strong limi-
tations. Indeed, if M = 6, adding 1 site at each junction
between the molecule and the leads to avoid artefacts and
2 sites to let the system grow, we have to treat 10 sites
exactly. If we keep m = 100 states to describe this grow-
ing block, the dimension d of the global Hilbert space is
roughly: d = m × 210 ×m = 107 and it is difficult to do
much better.

Therefore, we have only been able to get accurate re-
sults up to L = 30. We did not go further, because for
L = 32 and the maximum available m (actually 120), the
relative error on the current was already 5% in the non-
interacting case. It is nevertheless satisfactory to see that
the results are again consistent with the extrapolation of
the exact diagonalization data, as shown in Figure 4.
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Fig. 5. Plot of the average persistent current I versus the
molecular potential in the interacting case for V/t = 1.
This curve has the same general shape as I(εm) in the non-
interacting case. Here M = 6, L = 18, t1 = 2.6t , t2 = 2.2t,
α = 0.3t.

4.4 Results

4.4.1 Variation of ∆I with εm

The plot of ∆I versus εm (Fig. 5) for a half-filled ring has
the same shape as in the non-interacting case (Fig. 3).
The main effect of the interaction is to shift the location
εminm and the value Imin of the minimum current. But the
6 resonances are still present, although their relative dis-
tances change with respect to the non-interacting case.
The current Imin is the one we are interested in. And the
corresponding εminm does not change with L, but depends
on V (it is roughly equal to the opposite of V ): εminm coun-
terbalances the mean field effect of V .

4.4.2 Effect of V on I for a given gap

In order to study the effect of electron-electron interaction
on the minimum current, we have to find a meaningful way
to compare it to the non-interacting case. Now, in a real-
istic situation, the rough value of the hopping integrals t1
and t2 is usually known — it is basically given by the total
bandwidth 2(t1 + t2) — but the precise value of their ra-
tio, which together with the interaction term controls the
charge gap ∆c, is not known as accurately. The gap itself
is known quite accurately however. So we have decided to
compare models with the same values of 2(t1 +t2) and ∆c.
In a given class of models, V is then a function of t2/t1.

The main result of this paper is that, for a given band-
width and a given charge gap ∆c, the minimum persistent
current Imin is larger when the interaction is partially re-
sponsible for the charge gap than when the charge gap is
due only to the dimerization. If we plot Imin versus V for
fixed ∆c and bandwidth, as in Figure 6, this effect ap-
pears clearly, and it is quite substantial. For example, if

0.0 1.0 2.0 3.0
0.0

1.0

2.0

3.0

4.0

5.0

t1+t2=4
∆c=1.523

∆c=2.141

∆c=2.703

∆c=3.017

∆I
m

in

V

Fig. 6. Plot of the minimum of the persistent current ∆Imin
versus the repulsion V for fixed charge gap and bandwidth.

2(t1 + t2) = 4t and ∆c = 3.02t we get a current twice as
large for V = t than in the non-interacting case. Note in
Figure 6 that each curve is limited to the right since there
is a maximum value of V consistent with each given gap.

In fact, if we plot the current versus the repulsion for
given bands, it decreases from I0 to I1 by turning on the
repulsion. But this repulsion also increases strongly the
gap. And the noninteracting system having this new gap
has a current much lower than I1. This is why the effect
of the interaction for a fixed gap favours the tunneling of
electrons through the molecule.

4.4.3 Influence of the molecule’s length

The results of the previous subsection can be extended to
M = 8 and M = 10. As mentioned in the Introduction,
the current decreases exponentially with the length of the
molecule in the non-interacting case. We find that for vari-
ous parameters (repulsion, bandwidth, dimerisation), this
exponential behavior still holds for interacting particules,
as shown in Figure 7.

If we choose a set of parameters and consider the
equivalent, non-interacting system (same gap, same band-
width), this system turns out to depend only very slightly
on the size. Therefore, the corresponding current decreases
exponentially with M . And we find that the coefficient of
this exponential is larger than in the interacting case. (In
Fig. 7 it is given by the slope of the lines.) In other words,
the current is not only larger when interactions are present
for a given size, but the exponential decrease with respect
to the length of the molecule is slower in the interacting
case as well. This is very important since it is this expo-
nential decrease that puts limitations on the use of long
molecules as wires.
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Fig. 7. Plot of the logarithm of ∆I versus the size M of the
molecule. For each interacting system (circle) the equivalent
non-interacting system (same gap and band-width) is plotted
with crosses. In each example, we get straight lines and the
curve with interaction is above the corresponding one without
interaction and decreases more slowly.

5 Conclusions

In this paper, our goal was to estimate the tunneling
current through an interacting oligomere molecule, like
polyene. The interaction turned out to play an impor-
tant role. In this molecule, the charge gap can be repro-
duced by a dimerization and no interaction. This would
correspond to a band insulator in the limit of an infinite
molecule. This gap can also be reproduced by interac-
tions and a smaller dimerization. Then we tend toward
the Mott-Hubbard gap limit.

If we fix the band parameters, the charge gap increases
when we turn on the interaction, and our numerical sim-
ulations show of course a decrease of the current. But for
a given bandwidth, if we reduce the dimerization while
we increase the interaction, in order to keep a constant
charge gap, then the current grows. Thus a Mott-Hubbard
gap is less damaging than a pure dimerization gap for the
current. Furthermore, in the interacting case, the persi-
tent current decreases exponentially with the size of the
molecule, like in the non-interacting equivalent case, but
more slowly. So, the above mentioned difference concern-
ing the current between a Mott-Hubbard gap and a pure
dimerization gap increases with the size of the molecule.

The next step will be to study the effect of the spin to
check whether our results will hold for a realistic molecule
with spin degrees of freedom. Clearly, they can already be
applied to compounds where the on-site repulsion is strong
compared to the other energy scales, and polyene is not so
far from this situation, since t1 ' 2.5 eV, U ' 11.5 eV and
V ' 2.4 eV. Whether this remains true for more general
systems is left for future work.

We acknowledge very useful discussions with C. Bruder, C.
Joachim and M. Magoga. We are especially indebted to C.
Stafford for very useful explanations concerning persistent cur-
rents, and E. Sorensen for his help with the DMRG. The nu-
merical simulations have been performed on the C94 and C98
of the IDRIS.
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